TC39

Language Design in the
Open

Yulia Startsev e Berlin.js 2019

class ChildNetworkResponselLoader {
constructor(context, requestId) {
this.context = context;
this.requestId = requestId;

api() {
const {context, requestId} = this;
return {
getContent(callback) {
return context.childManager.callParentAsyncFunction (

"devtools.network.Request.getContent",
[requestId],
callback);

Hehehe it

Oh Oral

Hi. My name is Yulia.
| work at Mozilla. -

!l |
‘.

| am also a co-chairon ' .
TC39 4 ’

Overview

A bit of history

Issues from ES4

The Proposal Process

How is JavaScript designed today?

Current Work

Getting involved

What was JavaScript?

The Requirements

A scripting language for web APIs

Intended to be easy for both professionals and amateurs
Developed by Brendan Eich in 10 days

Originally planned as a Scheme-like language[*]

It should look like Java

https://en.wikipedia.org/wiki/Brendan_Eich#cite_note-Saternos2014-6

http://speakingjs.com/es5/ch04.html

The Timeline

A prototype named Mocha

Written in 10 days by Brendan
Eich, this is the first “JavaScript”

implementation from netscape ECMAScript 1 ECMAScript 3 ECMAScript 6 ...
1996 1998 2009
1995 1997 1999 2015
Microsoft releases JScript ECMAScript 2 ECMAScript 5

JScript was a reverse engineered
version of JavaScript. To keep
MicroSoft in check, Netscape
moved to standardize JavaScript

TC39 and its structure

Part of Ecma International

Technical Committee 39 of Ecma International

Takes care of several standards aside from JavaScript, including
ECMA-402, ECMA-404,ECMA-414

e Operates via “consensus”

The Timeline

A prototype named Mocha ECMAScript 1 ECMAScript 3 ECMAScript 6 ...

1996 1998 2009

1995 1997 I 1999 2015

Microsoft releases JScript ECMAScript 2 ECMAScript 5

Issues with ES4[’]

e ES4 was aproposed standard that was debated for 10 years

e Proposals were added to the language without implementations

e It became too large, vendors began to wonder how much of it should be
implemented

e ES3.1wasintroduced as an incremental change that was a subset of ES4

e These two specifications eventually came into conflict

https://johnresig.com/blog/ecmascript-harmony/

Moving forward with “Harmony™

e The project codenamed “Harmony” would lead to first to
ES3.1, then ES5 and ES6[*]

e Addresses the issue of having working implementations
for proposals, called the Harmony Process

e Introduces astructure of champions, using ESDiscuss,
and advancing proposals in stages

https://johnresig.com/blog/ecmascript-harmony/
http://tc39wiki.calculist.org/about/harmony/

Someone has an idea Committee discusses if Proposal is included in
and they write it up this feature “should be the specification
in the language”

Theideais presented Polyfill and browser
to the committee, implementations, final
committee makes form of the proposal

comments takes shape

Stage o

e Allow input into the specification

Example: Pattern matching

Matching fetch() responses:

const res = await fetch(jsonService)
case (res) {
when {status: 200, headers: {'Content-Length': s}} — {
console.log(size is ${s}’)
}
when {status: 404} — {
console.log('JSON not found')
X
when {status} if (status >= 400) —> {
throw new RequestError(res)

}
X

https://github.com/tc39/proposal-pattern-matching

Stage 1

e Make the case for the addition
e Describe the shape of a solution
e Identify potential challenges

Requirements

e ldentified “champion” who will advance the addition

e Prose outlining the problem or need and the general shape of a solution

o lllustrative examples of usage

e High-level API

e Discussion of key algorithms, abstractions and semantics

e ldentification of potential “cross-cutting” concerns and implementation
challenges/complexity

Stage 2

Precisely describe the syntax and semantics using formal spec language

The committee expects the feature to be developed and eventually included in the
standard

Requirements

e |[nitial spec text
e all major semantics, syntax and APl are covered, but TODOs, placeholders
and editorial issues are expected

Stage 3

Indicate that further refinement will require feedback from implementations
and users

The solution is complete and no further work is possible without implementation
experience, significant usage and external feedback.

Requirements

e Complete spec text

o Designated reviewers have signed off on the current spec text
o AllECMAScript editors have signed off on the current spec text
e Allsemantics, syntax and APl are completed described

Stage 4

Indicate that the addition is ready for inclusion in the formal ECMAScript
standard

Requirements

e Test262 acceptance tests have been written for mainline usage scenarios,
and merged

e Two compatible implementations which pass the acceptance tests
Significant in-the-field experience with shipping implementations, such as
that provided by two independent VMs

e Apull request has been sent to tc39/ecma262 with the integrated spec
text

e All ECMAScript editors have signed off on the pull request

https://github.com/tc39/test262
https://github.com/tc39/ecma262

How Is JavaScript Designhed
Today?

Someone has an idea Committee discusses if Proposal is included in
and they write it up this feature “should be the specification
in the language”

Theideais presented Polyfill and browser
to the committee, implementations, final
committee makes form of the proposal

comments takes shape

TC39 Meetings

6 meetings a year

89 delegates from members

Usual attendance of ~60

Proposals are presented followed by debate
Session ends with a decision

Everything is recorded and published at
https://github.com/tc39/tc39-notes

https://github.com/tc39/tc39-notes

Ecma TC39

Ecma International, Technical Committee 39 - ECMAScript

The web https://www.ecma-international.org/me...

Repositories 112 22 People 129 (i) Teams M Il Projects 0

Pinned repositories

ecma262 proposals test262

Status, process, and documents for ECMA262 Tracking ECMAScript Proposals Official ECMAScript Conformance Test Suite
@®HTML %68k Y492 * 51k %183 JavaScript w822 ¥ 217

agendas tc39-notes ecmad402

Forked from rwaldron/tc39-notes

TC39 meeting agendas Status, process, and documents for ECMA 402

TC39 Meeting Notes

JavaScript w359 %108 JavaScript w315 ¥ 30 @HTML %155 ¥ 37

https://github.com/tc39

Developers

Vendors

Stakeholders

®
“ ®W3V
Developers I ETE

The Extensible Web Manifestol’]

e The standards process should focus on adding new low-level
capabilities to the web platform that are secure and efficient.

e The web platform should expose low-level capabilities that ***explain
existing features™*, such as HTML and CSS, allowing authors to
understand and replicate them.

e The web platform should develop, describe and test new high-level
features in JavaScript, and allow web developers to iterate on them
before they become standardized. This creates a virtuous cycle
between standards and developers.

e The standards process should prioritize efforts that follow these
recommendations and deprioritize and refocus those which do not.

https://github.com/extensibleweb/manifesto

Backwards Compatibility

e Many people rely on the web for their livelihood

e Many people rely on services provided by the web

e Not all users have the capability to upgrade their
operating system or their browsers.

i tried @cyanharlow's incredible pure css portrait in an old
version of opera and well, the disclaimer wasn't lying: "so the
live preview will most likely look laughable in anything other than
chrome"github.com/cyanharlow/pur...

7:17 PM - May 1, 2018

Q 1,269) 424 people are talking about this

Pure CSS Francine by Diana Smith

David Zhou & L 4
@dz

Mayowa Tomori
@mdotslash

And Netscape Navigator for the true romantics amongst you.
pic.twitter.com/hO12KvVoJg

4:50 AM - May 2, 2018

e0e Francine
B B 0 Wi /ders-aorame compurecss-rancrer b © nesare
—

Netscape.:

5 pone

Q) 238 () 54 people are talking about this

https://github.com/cyanharlow/purecss-francine

Developers

Why not break the web?

e Thecosts areimpossible to estimate
e Itiseasytorename something.

Array. .contains -> Array. .includes

e Breaking the Web affects users disproportionately
compared to developers. Making the web worse for users
pushes them away from the web.

Current work

WASM and JavaScript
Class improvements
Realms

Lots more!

README.md s

WeakReferences TC39 proposal

Introduction

The WeakRef proposal encompasses two major new pieces of functionality:

1. creating weak references to objects with the WeakRef class

2. running user-defined finalizers after objects are garbage-collected, with the FinalizationGroup class

These interfaces can be used independently or together, depending on the use case.

A note of caution

Garbage collectors are complicated. If an application or library depends on GC cleaning up a WeakRef or calling a
finalizer in a timely, predictable manner, it's likely to be disappointed: the cleanup may happen much later than expected,
or not at all. Sources of variability include:

e One object might be garbage-collected much sooner than another object, even if they become unreachable at the
same time, e.g., due to generational collection.

e Garbage collection work can be split up over time using incremental and concurrent techniques.
e Various runtime heuristics can be used to balance memory usage, responsiveness.

e The JavaScript engine may hold references to things which look like they are unreachable (e.g., in closures, or inline
caches).

o Different JavaScript engines may do these things differently, or the same engine may change its algorithms across
versions.

Fnr thie reacnn tha W2 TA(R Necinn Princinlae rerammend anainet rraatinn APle that avnnea narhana rallertinn It'e

README.md

JavaScript Decorators

Stage 2

Status

Decorators are a JavaScript language feature, proposed for standardization at TC39. Decorators are currently at Stage 2
in TC39's process, indicating that the committee expects them to eventually be included in the standard JavaScript
programming language. The decorators champion group is considering a redesign of the proposal as "static decorators",
which the rest of this document describes.

The idea of this proposal

This decorators proposal aims to improve on past proposals by working towards twin goals:

e |t should be easy not just to use decorators, but also to write your own.

o Decorators should be fast, both generating good code in transpilers, and executing fast in native JS
implementations.

This proposal enables the basic functionality of the JavaScript original decorators proposal (e.g., most of what is
available in TypeScript decorators), as well as two additional capabilities of the previous Stage 2 proposal which were
especially important: access to private fields and methods, and registering callbacks which are called during the
constructor.

Core elements:

e There's a set of built-in decorators that serve as the basic building blocks.

Aaran « Danlara a mathnad Ar tha antira ~lace with tha ratiirn valiia Af a Aivan fiinAtinn

README.md

ECMAScript Pattern Matching

Status

Stage: 1
Author: Kat Marchan (npm, @maybekatz)

Champions: Brian Terlson (Microsoft, @bterlson), Sebastian Markbage (Facebook, @sebmarkbage), Kat Marchan (npm,
@maybekatz)

Introduction

This proposal adds a pattern matching expression to the language, based on the existing Destructuring Binding Patterns.

There's many proposals potentially related to this one, and other proposals might mention interaction with this. This file
includes casual, example-based discussion of the proposal, and there's also a document describing the core semantics
in more formal language, which will be iterated over into the final Spec-ese.

There's also a document including suggestions for other future proposals, which are dependent on this one, but do not
directly affect the main behavior of the feature.

This proposal was approved for Stage 1 in the May 2018 TC39 meeting, and slides for that presentation are available.

This proposal draws heavily from corresponding features in Rust, F#, Scala, and Elixir/Erlang.

Motivating Examples

Getting Involved!

Community groups
The website

Discourse
Participating on github

What to watch for news

Community Groups

e Community groups have been organized around tooling,
frameworks and teaching.

e Groups meet once amonth on average

e We are planning an “open house” community call after
each plenary

e |f youwant to getinvolved, talk to me

The website

e The website lives at http://tc39.github.io

e You can participate in the work on the website at
https://github.com/tc39/tc39.github.io

e You can also check the website for change as the spec
evolves.

http://tc39.github.io
https://github.com/tc39/tc39.github.io

Participating on Github

e You will need to sign the IPR form

e You can find all of the proposals under
https://github.com/tc39/proposals

e Youcanalsowork on tests at
https://github.com/tc39/test-262

https://github.com/tc39/proposals
https://github.com/tc39/test-262

News? What to watch

The website

ES discourse

Proposals directory

Notes summaries

Follow committee members, we often post news

Upcoming Events in Berlin

e JSConfEU Panel - June 1-2

o Ask us Questions!
o Usethe twitter tag #tc3%panel
o We will answer on stage and the session will be recorded

e Meetthe TC39 - June 6th

o Atfullstack.js meetup
o https://t.co/dPrgyrJSzh

https://twitter.com/hashtag/tc39panel?f=tweets&vertical=default&src=hash
https://t.co/dPrqyrJSzh

Seriously. ask us questions
#tc39panel

Thank you.

Please get in touch

@ioctaptceb

yulia@mozilla.com

